21 resultados para High-angular resolution diffusion imaging (HARDI)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid WDM/TDM enabled microstructure based optical fiber sensor network with large capacity is proposed. Assisted by Fabry-Perot filter, the demodulation system with high speed of 500Hz and high wavelength resolution less than 4.91pm is realized. © OSA 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an investigation of thermal properties of long-period fiber gratings (LPFGs) of various periods fabricated in the conventional B-Ge codoped fiber. It has been found that the temperature sensitivity of the LPFGs produced in the B-Ge fiber can be significantly enhanced as compared with the standard telecom fiber. A total of 27.5-nm spectral shift was achieved from only 10 °C change in temperature for an LPFG with 240-μm period, demonstrating a first ever reported high sensitivity of 2.75 nm/°C. Such an LPFG may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high-temperature resolution. The nonlinear thermal response of the supersensitive LPG was also reported and first explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism is a developmental disorder that is currently defined in terms of a triad of impairments in social interaction, communication, and behavioural flexibility. Psychological models have focussed on deficits in high level social and cognitive processes, such as ‘weak central coherence’ and deficits in ‘theory of mind’. Converging evidence from different fields of neuroscience research indicates that the underlying neural dysfunction is associated with atypical patterns of cortical connectivity (Rippon et al., 2007). This arises very early in development and results in sensory, perceptual and cognitive deficits at a much earlier and more fundamental level than previously suggested, but with cascading effects on higher level psychological and social processes. Earlier research in this sphere has focussed mainly on patterns of underconnectivity in distributed cortical networks underpinning process such as language and executive function. (Just et al., 2007). Such research mainly utilises imaging techniques with high spatial resolution. This paper focuses on evidence associated with local over-connectivity, evident in more low level and transitory processes and hence more easily measurable with techniques with high temporal resolution, such as MEG and EEG. Results are described which provide evidence of such local over-connectivity, characterised by atypical results in the gamma frequency range (Brown et al., 2005) together with discussions about the future directions of such research and its implications for remediation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As we settle into a new year, this second issue of Contact Lens and Anterior Eye allows us to reflect on how new research in this field impacts our understanding, but more importantly, how we use this evidence basis to enhance our day to day practice, to educate the next generation of students and to construct the research studies to deepen our knowledge still further. The end of 2014 saw the publication of the UK governments Research Exercise Framework (REF) which ranks Universities in terms of their outputs (which includes their paper, publications and research income), environment (infrastructure and staff support) and for the first time impact (defined as “any effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment or quality of life, beyond academia” [8]). The REF is a process of expert review, carried out in 36 subject-based units of assessment, of which our field is typically submitted to the Allied Health, Dentistry, Nursing and Pharmacy panel. Universities that offer Optometry did very well with Cardiff, Manchester and Aston in the top 10% out of the 94 Universities that submitted to this panel (Grade point Average ranked order). While the format of the new exercise (probably in 2010) to allocate the more than £2 billion of UK government research funds is yet to be determined, it is already rumoured that impact will contribute an even larger proportion to the weighting. Hence it is even more important to reflect on the impact of our research. In this issue, Elisseef and colleagues [5] examine the intriguing potential of modifying a lens surface to allow it to bind to known wetting agents (in this case hyaluronic acid) to enhance water retention. Such a technique has the capacity to reduced friction between the lens surface and the eyelids/ocular surface, presumably leading to higher comfort and less reason for patients to discontinue with lens wear. Several papers in this issue report on the validity of new high precision, fast scanning imaging and quantification equipment, utilising techniques such as Scheimpflug, partial coherence interferometry, aberrometry and video allowing detailed assessment of anterior chamber biometry, corneal topography, corneal biomechanics, peripheral refraction, ocular aberrations and lens fit. The challenge is how to use this advanced instrumentation which is becoming increasingly available to create real impact. Many challenges in contact lenses and the anterior eye still prevail in 2015 such as: -While contact lens and refractive surgery complications are relatively rare, they are still too often devastating to the individual and their quality of life (such as the impact and prognosis of patients with Acanthmoeba Keratitis reported by Jhanji and colleagues in this issue [7]). How can we detect those patients who are going to be affected and what modifications do we need to make to contact lenses and patient management prevent this occurring? -Drop out from contact lenses still occurs at a rapid rate and symptoms of dry eye seem to be the leading cause driving this discontinuation of wear [1] and [2]. What design, coating, material and lubricant release mechanism will make a step change in end of day comfort in particular? -Presbyopia is a major challenge to hassle free quality vision and is one of the first signs of ageing noticed by many people. As an emmetrope approaching presbyopia, I have a vested interest in new medical devices that will give me high quality vision at all distances when my arms won’t stretch any further. Perhaps a new definition of presbyopia could be when you start to orientate your smartphone in the landscape direction to gain the small increase in print size needed to read! Effective accommodating intraocular lenses that truly mimic the pre-presbyopic crystalline lenses are still a way off [3] and hence simultaneous images achieved through contact lenses, intraocular lenses or refractive surgery still have a secure future. However, splitting light reaching the retina and requiring the brain to supress blurred images will always be a compromise on contrast sensitivity and is liable to cause dysphotopsia; so how will new designs account for differences in a patient's task demands and own optical aberrations to allow focused patient selection, optimising satisfaction? -Drug delivery from contact lenses offers much in terms of compliance and quality of life for patients with chronic ocular conditions such as glaucoma, dry eye and perhaps in the future, dry age-related macular degeneration; but scientific proof-of-concept publications (see EIShaer et al. [6]) have not yet led to commercial products. Part of this is presumably the regulatory complexity of combining a medical device (the contact lens) and a pharmaceutical agent. Will 2015 be the year when this innovation finally becomes a reality for patients, bringing them an enhanced quality of life through their eye care practitioners and allowing researchers to further validate the use of pharmaceutical contact lenses and propose enhancements as the technology matures? -Last, but no means least is the field of myopia control, the topic of the first day of the BCLA's Conference in Liverpool, June 6–9th 2015. The epidemic of myopia is a blight, particularly in Asia, with significant concerns over sight threatening pathology resulting from the elongated eye. This is a field where real impact is already being realised through new soft contact lens optics, orthokeratology and low dose pharmaceuticals [4], but we still need to be able to better predict which technique will work best for an individual and to develop new techniques to retard myopia progression in those who don’t respond to current treatments, without increasing their risk of complications or the treatment impacting their quality of life So what will your New Year's resolution be to make 2015 a year of real impact, whether by advancing science or applying the findings published in journals such as Contact Lens and Anterior Eye to make a real difference to your patients’ lives?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach—Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 ne-vHz at 7 Hz for a wavelength of 1535 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents details on progress made in the fabrication and application of short and novel structure fibre Bragg gratings. The basic theoretical concepts of in-fibre Bragg gratings and photosensitive mechanisms are introduced together with an overview of fabrication methods and applications presented to date. The fabrication of fibre Bragg gratings using a quadrupled Nd:YAG laser is presented and some of the issues of grating fabrication using a fabrication using a phasemask are investigated, including the variation of the separation of the fibre and phasemask, and other alignment issues. A new apodisation technique is presented, enabling the production of gratings with a wide range of spectral profiles. The technique is used to investigate the design and fabrication of length limited fibre Bragg gratings for use in telecommunication systems as filters. Application to devices designed for use in WDM systems is presented. The use of fibre Bragg gratings as high spatial resolution distributed sensors is investigated. Grating sensing arrays comprising very short apodised gratings are demonstrated and Chirped Moiré gratings are implemented as distributed sensors achieving high spatial resolution with miniature point sensing sub-elements. A novel grating sensing element designed to imitate an interferometer is also presented. Finally, the behaviour of gratings fabricated in Boron-Germania-co-doped fibre is investigated, revealing atypical behaviour of the Bragg wavelength during ageing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy (DHM). It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched f ilter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of ~0.05 µe/vHz at 20 Hz, while the interferometric phase resolution is better than 1 mrad/vHz at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under ideal conditions ion plating produces finely grained dense coatings with excellent adhesion. The ion bombardment induced damage initiates a large number of small nuclei. Simultaneous coating and sputtering stimulates high rates of diffusion and forms an interfacial region of graded composition responsible for good adhesion. To obtain such coatings on components far industrial applications, the design and construction Of an ion plater with a 24" (O.6rn) diameter chamber were investigated and modifications of the electron beam gun were proposed. A 12" (O.3m) diameter ion plater was designed and constructed. The equipment was used to develop surfaces for solar energy applications. The conditions to give extended surfaces by sputter etching were studied. Austenitic stainless steel was sputter etched at 20 and 30 mTorr working pressure and at 3, 4 and 5 kV. Uniform etching was achieved by redesigning the specimen holder to give a uniform electrostatic field over the surfaces of the specimens. Surface protrusions were observed after sputter etching. They were caused by the sputter process and were independent of grain boundaries, surface contaminants and inclusions. The sputtering rate of stainless steel was highly dependent on the background pressure which should be kept below 10-5 Torr. Sputter etching improved the performance of stainless steel used as a solar selective surface. A twofold improvement was achieved on sputter etching bright annealed stainless steel. However, there was only slight improvement after sputter etching stainless steel which had been mechanically polished to a mirror finish. Cooling curves Were used to measure the thermal emittance of specimens.The deposition rate of copper was measured at different levels of power input and was found to be a maximum at 9.5 kW. The diameter of the copper feed rod was found to be critical for the maintenance of a uniform evaporation rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy. It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution. © Springer Science+Business Media, LLC. 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched f ilter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of ~0.05 µe/vHz at 20 Hz, while the interferometric phase resolution is better than 1 mrad/vHz at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.